skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ozaki, Kazumi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The evolution and expansion of land plants brought about one of the most dramatic shifts in the history of the Earth system — the birth of modern soils — and likely stimulated massive changes in marine biogeochemistry and climate. Multiple marine extinctions characterized by widespread anoxia, including the Late Devonian mass extinction around 372 million years ago, may have been linked to terrestrial release of the nutrient phosphorus driven by newly-rooted landscapes. Here we use recently published Devonian lake records as variable inputs in an Earth system model of the coupled carbon-nitrogen-phosphorus-oxygen-sulfur biogeochemical cycles to evaluate whether recorded changes to phosphorus fluxes could sustain Devonian marine anoxia sufficient to drive mass extinction. Results show that globally scaled increases in riverine phosphorus export during the Late Devonian mass extinction could have generated widespread marine anoxia, as modeled perturbations in carbon isotope, temperature, oxygen, and carbon dioxide data are generally consistent with the geologic record. Similar results for large scale volcanism suggest the Late Devonian mass extinction was likely multifaceted with both land plants and volcanism as contributing factors. 
    more » « less